881 research outputs found

    Surface Acoustic Wave induced Transport in a Double Quantum Dot

    Get PDF
    We report on non-adiabatic transport through a double quantum dot under irradiation of surface acoustic waves generated on-chip. At low excitation powers, absorption and emission of single and multiple phonons is observed. At higher power, sequential phonon assisted tunneling processes excite the double dot in a highly non-equilibrium state. The present system is attractive for studying electron-phonon interaction with piezoelectric coupling.Comment: 4 pages, 3 figure

    Non-adiabatic two-parameter charge and spin pumping in a quantum dot

    Full text link
    We study DC charge and spin transport through a weakly coupled quantum dot, driven by a non-adiabatic periodic change of system parameters. We generalize the model of Tien and Gordon to simultaneously oscillating voltages and tunnel couplings. When applying our general result to the two-parameter charge pumping in quantum dots, we find interference effects between the oscillations of the voltage and tunnel couplings. Furthermore, we discuss the possibility to electrically pump a spin current in presence of a static magnetic field.Comment: 4.1 pages, 4 figure

    Spin injection and perpendicular spin transport in graphite nanostructures

    Get PDF
    Organic and carbon-based materials are attractive for spintronics because their small spin-orbit coupling and low hyperfine interaction is expected to give rise to large spin-relaxation times. However, the corresponding spin-relaxation length is not necessarily large when transport is via weakly interacting molecular orbitals. Here we use graphite as a model system and study spin transport in the direction perpendicular to the weakly bonded graphene sheets. We achieve injection of highly (75%) spin-polarized electrons into graphite nanostructures of 300-500 nm across and up to 17 nm thick, and observe transport without any measurable loss of spin information. Direct visualization of local spin transport in graphite-based spin-valve sandwiches also shows spatially uniform and near-unity transmission for electrons at 1.8 eV above the Fermi level

    The connection between noise and quantum correlations in a double quantum dot

    Full text link
    We investigate the current and noise characteristics of a double quantum dot system. The strong correlations induced by the Coulomb interaction create entangled two-electron states and lead to signatures in the transport properties. We show that the interaction parameter phi, which measures the admixture of the double-occupancy contribution to the singlet state and thus the degree of entanglement, can be directly accessed through the Fano factor of super-Poissonian shot noise.Comment: 5 pages, major revision, to be published in Phys. Rev.

    Coherent single electron spin control in a slanting Zeeman field

    Get PDF
    We consider a single electron in a 1D quantum dot with a static slanting Zeeman field. By combining the spin and orbital degrees of freedom of the electron, an effective quantum two-level (qubit) system is defined. This pseudo-spin can be coherently manipulated by the voltage applied to the gate electrodes, without the need for an external time-dependent magnetic field or spin-orbit coupling. Single qubit rotations and the C-NOT operation can be realized. We estimated relaxation (T1T_1) and coherence (T2T_{2}) times, and the (tunable) quality factor. This scheme implies important experimental advantages for single electron spin control.Comment: 4 pages, 3 figure

    Entanglement distillation by adiabatic passage in coupled quantum dots

    Get PDF
    Adiabatic passage of two correlated electrons in three coupled quantum dots is shown to provide a robust and controlled way of distilling, transporting and detecting spin entanglement, as well as of measuring the rate of spin disentanglement. Employing tunable interdot coupling the scheme creates, from an unentangled two-electron state, a superposition of spatially separated singlet and triplet states. A single measurement of a dot population (charge) collapses the wave function to either of these states, realizing entanglement to charge conversion. The scheme is robust, with the efficiency close to 100%, for a large range of realistic spectral parameters.Comment: 5 pages, 4 figure

    Time-dependent magnetotransport of a wave packet in a quantum wire with embedded quantum dots

    Full text link
    We consider wave packet propagation in a quantum wire with either an embedded antidot or an embedded parallel double open quantum dot under the influence of a uniform magnetic field. The magnetoconductance and the time evolution of an electron wave packet are calculated based on the Lippmann-Schwinger formalism. This approach allows us to look at arbitrary embedded potential profiles and illustrate the results by performing computational simulations for the conductance and the time evolution of the electron wave packet through the quantum wire. In the double-dot system we observe a long-lived resonance state that enhances the spatial spreading of the wave packet, and quantum skipping-like trajectories are induced when the envelop function of the wave packet covers several subbands in appropriate magnetic fields.Comment: RevTeX, 9 pages with 8 included postscript figure

    AC-driven double quantum dots as spin pumps and spin filters

    Full text link
    We propose and analyze a new scheme of realizing both spin filtering and spin pumping by using ac-driven double quantum dots in the Coulomb blockade regime. By calculating the current through the system we demonstrate that the spin polarization of the current can be controlled by tuning the parameters (amplitude and frequency) of the ac field. We also discuss spin relaxation and decoherence effects in the pumped current.Comment: 5 pages, 4 figure

    Exchange-controlled single-electron-spin rotations in quantum dots

    Full text link
    We show theoretically that arbitrary coherent rotations can be performed quickly (with a gating time ~1 ns) and with high fidelity on the spin of a single confined electron using control of exchange only, without the need for spin-orbit coupling or ac fields. We expect that implementations of this scheme would achieve gate error rates on the order of \eta ~ 10^{-3} in GaAs quantum dots, within reach of several known error-correction protocolsComment: 4+ pages, 3 figures; v2: Streamlined presentation, final version published in PRB (Rapid Comm.
    • …
    corecore